# Geothermal Energy Solutions for Arid Environment: Continous Hybrid Cooling

Ernst Huenges, Felina Schütz, Christian Wenzlaff, Sausan Al Riyami GFZ German Research Centre for Geosciences, Section Geoenergy



# **Energy Consumption in Oman**

Total power supplied in Oman

~25 TWh<sup>a</sup> (Germany ~650 TWh<sup>d</sup>)

Total residential cooling use 2014

~11.6 TWh<sup>a</sup> (residential heating: Germany ~136 TWh<sup>d</sup>)

Residential annual power used for cooling in Muscat

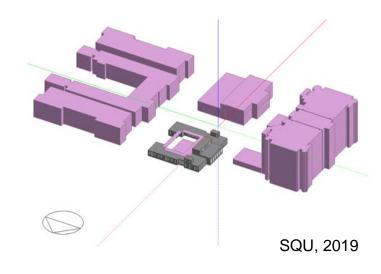
~5.8 TWh<sup>a</sup> (district heating Berlin ~8.5 TWh<sup>e</sup>)



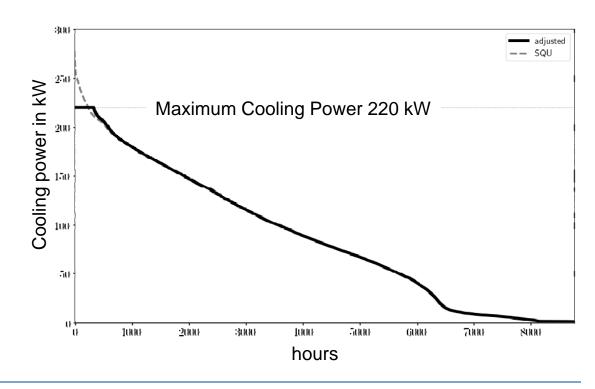
The electricity sector in Oman is primarily based on natural gas (97.5%) and diesel (2.5%) <sup>a</sup>.



<sup>&</sup>lt;sup>a</sup> Authority for Energy Regulation, Oman




<sup>&</sup>lt;sup>b</sup> Residential Energy Use In Oman: A Scoping Study, Trevor Sweetnam <sup>e</sup>DIW ECON


<sup>&</sup>lt;sup>c</sup> Energy Information Agency, USA

d International Energy Agency

## Case study for a Social Centre in Muscat



Cooling load per year: 761 MWh



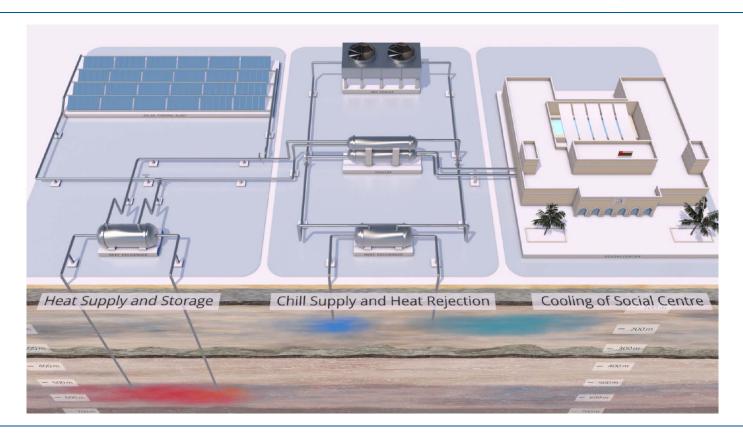




# Concept for a Continuously Operating Cooling System based on Renewables



Further potential underground use:


- Rejection of waste heat as an alternative to dry or wet cooling towers
- Storage Options: aquifer thermal energy storage (ATES) or borehole thermal energy storage (BTES)

#### Further partners:

- CAU-Christian Albrecht University zu Kiel
- **Beuth University Berlin**



## Concept of the GeoSolCool Project





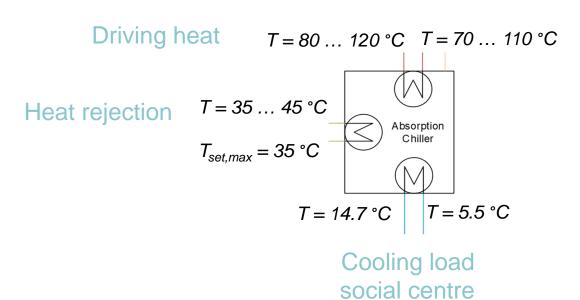


## Concept of the Absorption Chiller

#### **Absorption chiller types:**

- A. Single Stage LithiumBromide/Water
  Absorption Chiller
- B. Double Stage Lithium-Bromide/Water Absorption Chiller
- C. Water/Ammonia Absorption Chiller

# Lithium-Bromide/Water Absorption Chiller


are the most efficient among absorption chiller types, but are limited through the maximum heat rejection temperature. To achieve the required chilled water temperature of 5.5 °C, the heat rejection temperature has to be below 40 °C.



## Concept of the Absorption Chiller

#### **Single Stage Li-Br Absorption Chiller:**

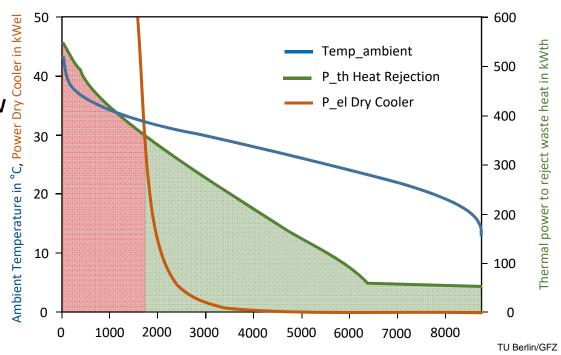
with rated cooling power of 220 kW and maximum allowed heat rejection temperature below 40 °C for achieving 5.5 °C chilled water temperature





#### Harsh weather conditions in Oman

- Average annual temperature in Muscat: 29° C
  - May, June, July are the hottest months
  - temperature can rise to 50° C



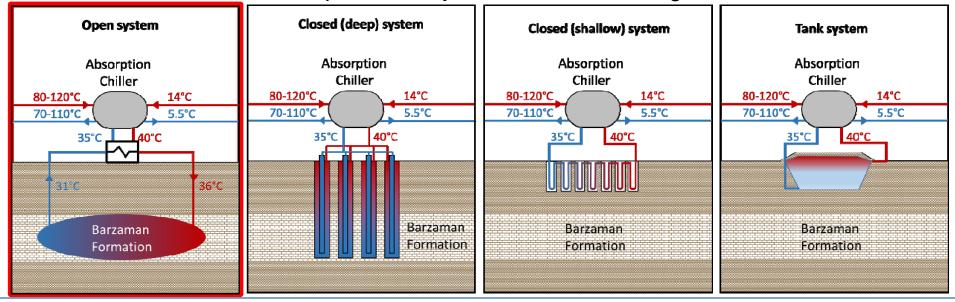

The ambient air temperature of Oman is too high to efficiently reject the waste heat of an absorption chiller to the surrounding environment



### Concept of heat rejection - dry cooler/underground

- Strong increase of P\_el Dry
   Cooler at Temp\_ambient > 30 °C
   → Dry cooler limit at 33 °C
- ~1862 h/year with an amount of~720 MWh cannot be rejectedby the dry cooler

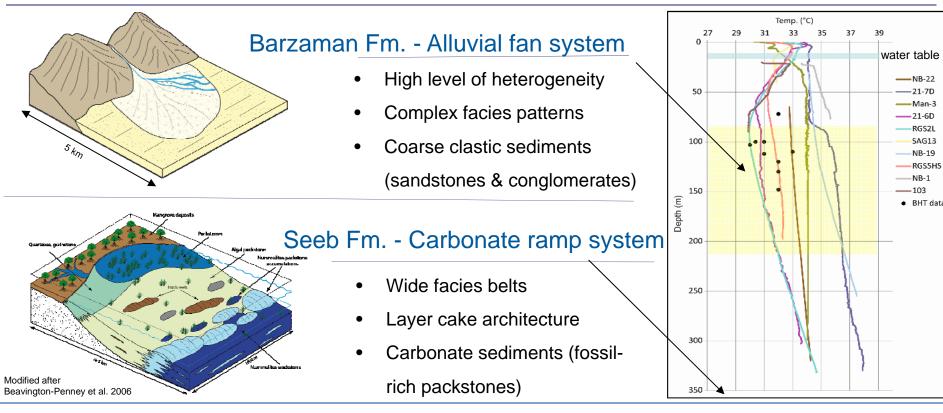





Solution for 33°C plus required!

# Innovative concept of heat rejection

**Heat rejection:** GeoSolCool Project - combination of dry cooler and underground cooling  $\dot{Q}_{HR,max} = \sim 550 \ kW$ ,  $\dot{Q}_{HR,mean} = 400 \ kW$ 


Different options to reject heat to the underground exist:





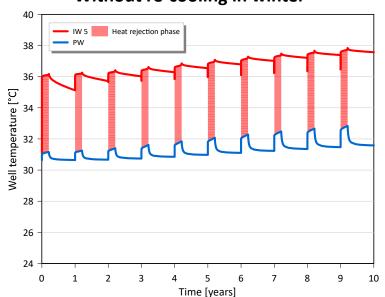



## Potential storage systems



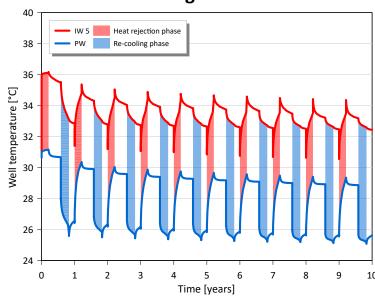


#### Heat rejection to the underground through a doublet




- operation per year:ca. 1850 h
- rejected heat 718 MWh, mean heat flux 392 kW, max. heat flux 550 kW temperature 40°C to be cooled to < 35°C</li>
- temperature in the target horizon: 31°C




#### Comparison re-cooling vs no re-cooling in winter

#### Without re-cooling in winter



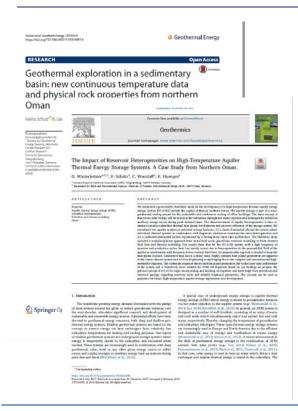
- Production temperature is increasing over time
- No sustainable process possible

#### **Re-cooling in winter**



- > Sustainable process possible
- Amount of re-cooling could be decreased with increasing natural groundwater flow






## Lessons learned

- Geothermal options in arid climates:
  - Heat recovery from deep sources to operate absorption chillers
  - ATES for continuous chill supply (either hot or cold side)
  - Underground heat rejection because dry coolers consume a lot of energy
- The underground provides stable temperature conditions throughout the year
- a doublet can be used to reject the heat of a thermally driven cooling system during the hottest summer month (T > 33° C)
- A sustainable process can be reached when the aquifer is re-cooled during the colder winter month
- Deep borehole heat exchanger are also an option; disadvantage higher costs;
   advantage less interaction with the environment



## Publications/Conferences



- Winterleitner, G., Schütz, F., Wenzlaff, C., Huenges, E. (2018): The Impact of Reservoir Heterogeneities... Geothermics, 74, pp. 150-162.
- Schütz, F., Winterleitner, G., Huenges, E. (2018): Geothermal exploration in a sedimentary basin... - Geothermal Energy, 6, 5.
- Cordes, T., Al-Riyami, S. (2018): Simulations of Solar Thermal Cooling System for a Building at Innovation Park Muscat. EuroSun2018, 12<sup>th</sup> International Conference on Solar Energy for Buildings and Industry, Rapperswill, Switzerland.
- Al Lawati, M. et al.: First Steps in Design and Simulation of the Control Unit of a Continuous Cooling System.. - Conference Proceedings, SWC 2017 (Abu Dhabi, United Arab Emirates, 2017).

