

A Workflow for Regional Exploration of CO₂ Storage Sites in Saline Aquifers

Christopher Lloyd^{1*}, Mads Huuse¹, Bonita J Barrett², Andrew M W Newton³

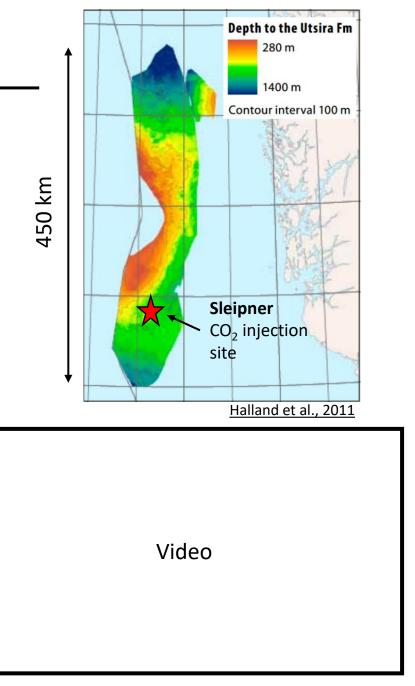
1 = The University of Manchester, UK

2 = Equinor ASA, Norway

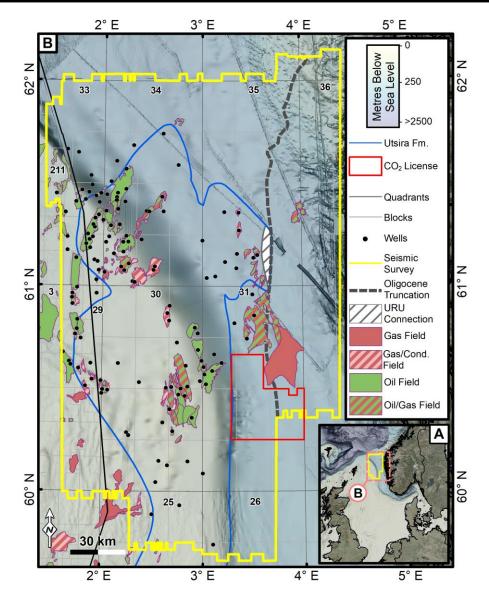
3 = Queens University Belfast, UK

* christopher.lloyd-2@manchester.ac.uk

Video


Rationale – Regional Variability

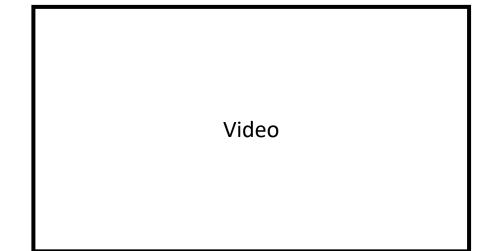
- Potential reservoir for upscaled CO₂ storage
- High theoretical storage volumes



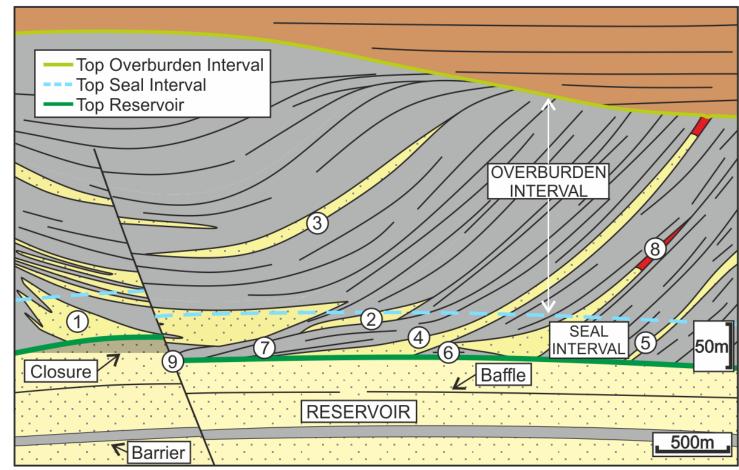
- X Lack of studies addressing seal and overburden
- K High regional stratigraphic variability

Reference	Year	Area	Scenario	Resource, Gt	
Holloway, 1996	1996	Full Utsira	Total Capacity	50.4	
Holloway, 1996	1990	Full Otsira	In traps	1.0	
Boe et al., 2002	2002	Full Utsira	Total Capacity	42.4	
	2002		In traps	0.8	
Chadwick et al., 2008	2008	Full Utsira	In traps	0.3	
Lindeberg et al., 2009	2009	Full Utsira	With water production	20-60	
Thibeau & Mucha, 2011	2011	Full Utsira	Pressure limited	4.2	
Halland et al., 2011	2012	Utsira & Skade	Total capacity	15.8	
Pham et al., 2013	2013	Sector model, Utsira & Skade		0.17	
Andersen et al., 2014	2014	Full Utsira	In traps	1.1	
	2014	i un otsira	Migration limited	2.2	
Ministry of Petroleum Energy, 2016	2016	Local structure	Migration limited	0.015-0.018	
Costo et al 2017	2017	Full Utsira	Pressure limited	2.4-8.3	
Gasda et al., 2017	2017	South Utsira	Pressure limited	5.0	
Furre et al., 2017	2017	Sleipner operations		0.017	
Thibeau et al., 2018	2018	Full Utsira	Total Capacity	1-60	
	Adapted from Thibeau et al., 2018				

Dataset


1. Broadseis[™] Seismic Survey

Complete 3D seismic coverage of the Northern North Sea (37,500km²) owned and provided by CGG.


2. FWI Velocity Cube *Owned and provided by CGG.*

3. 141 Exploration Wells

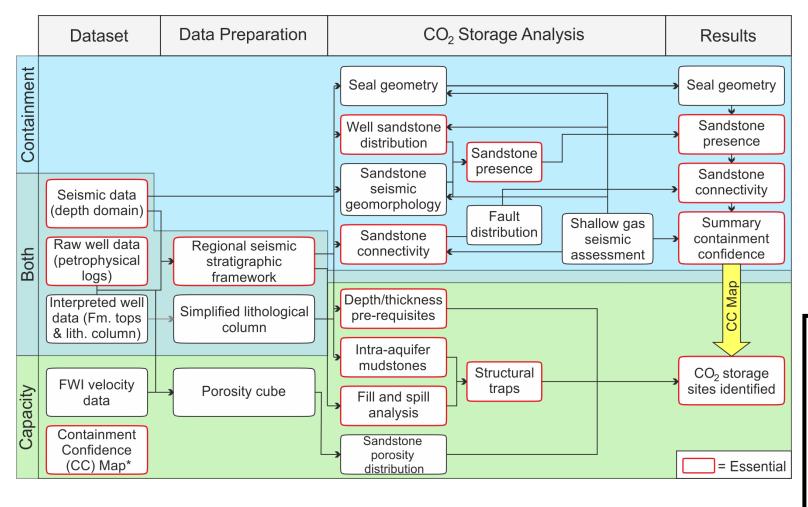
4. Interpreted Lithology Column *Provided by TGS.*

Elements Analysed for Storage Site Identification

Seal and overburden bypass scenarios

- 1. Connected Seal Interval sandstone
- 2. Unconnected Seal & Overburden Int. sandst. 7. Seal Int. mudstone barrier/baffle
- 3. Unconnected Overburden Int. sandst.
- 4. Connected Seal & Overburden Int. sandst.
- 5. Reservoir-to-foreset connection
- 6. Spatially-limited Seal Int. mudstone baffle
- 8. Trapped gas within clinothem
- 9. Open fault/ fault juxtaposes sands

Seal & Overburden Characteristics


- Seal and Overburden Intervals
- Minimum seal interval thickness
- Seal bypass systems
- overburden migration paths

Reservoir Characteristics

- Porosity distribution
- Intra-aquifer baffles vs barriers
- Structural closures

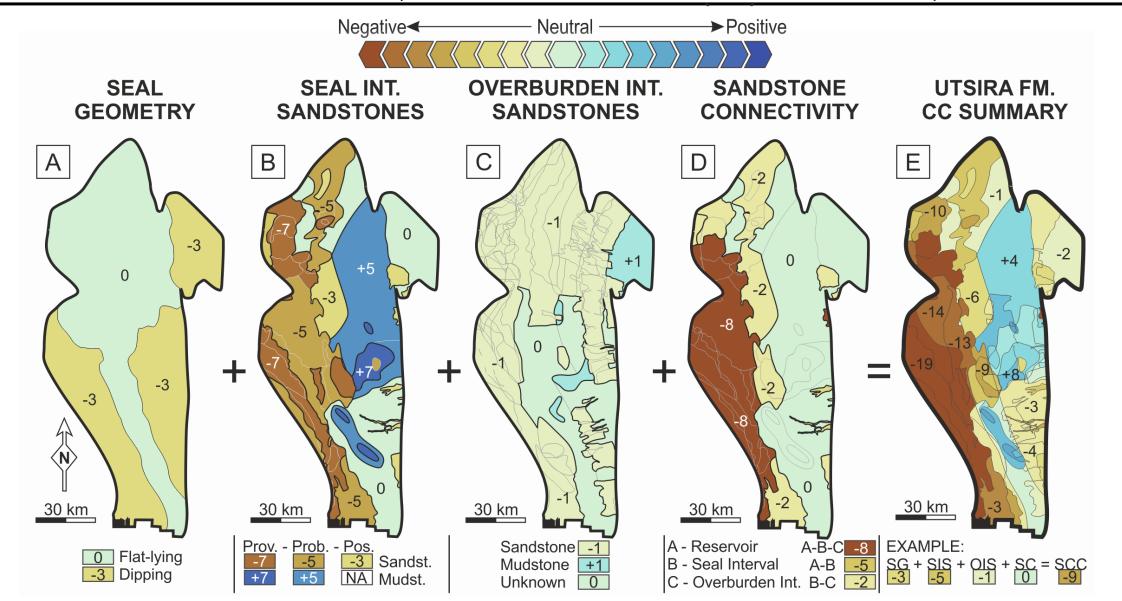
Video

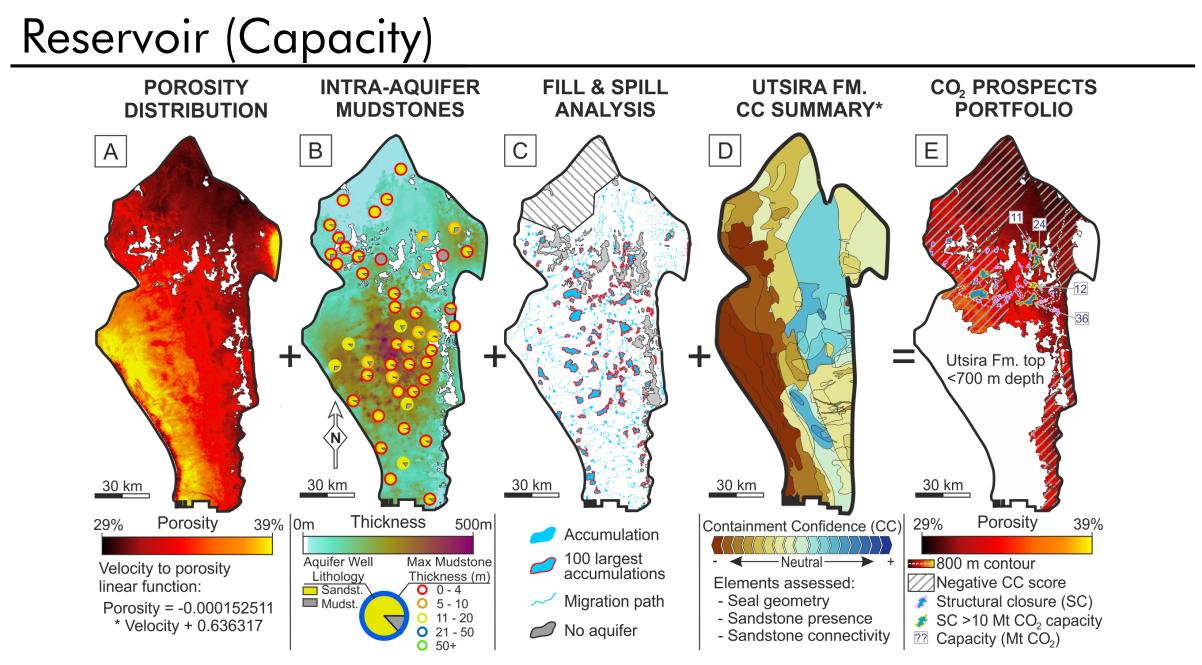
Workflow

CONTAINMENT

Seal & Overburden Characteristics

- Seal geometry
- Sandstone presence
- Sandstone connectivity


CAPACITY


Reservoir Characteristics

- Porosity
- Intra-aquifer mudstones
- Structural closures (Fill & Spill)

Video

Seal & Overburden (Containment Confidence)

References

- Andersen, A., Nilsen, H. and Lie, K. (2014). Reexamining CO2 Storage Capacity and Utilization of the Utsira Formation, Proceedings of the ECMOR XIV 14th European Conference on the Mathematics of Oil Recovery, Catania, Sicily, Italy, 8-11 September 2014
- Bøe R., Magnus C., Osmundsen P.T. and Rindstad B.I. (2002). CO₂ point sources and subsurface storage capacities for CO₂ in aquifers in Norway, NGU Report 2002.
- Chadwick A., Arts R., Bernstone C., May F., Thibeau S. and Zweigel P. (eds) (2008). Best practice for the storage of CO₂ in saline aquifers, Observations and guidelines from the SACS and CO₂STORE projects. BGS Occasional Publication No. 14. BGS, Keyworth, Nottingham, UK.
- Gasda, S., Wangen, M., Bjørnara, T. and Elenius, M. (2017) Investigation of caprock integrity due to pressure build-up during high-volume injection into the Utsira formation. *Energy Procedia*, 114, 3157-3166.
- Furre, A.K., Eiken, O., Alnes, H., Vevatne, J.N. and Kiær, A.F. (2017). 20 Years of Monitoring CO₂-injection at Sleipner. Energy procedia, 114, 3916-3926.
- Halland, E., Johansen, W. and Riis, F. (2011). CO₂ Storage Atlas, Norwegian North Sea. Publication of the Norwegian Petroleum Directorate.
- Holloway S. (ed.) (1996). The underground disposal of carbon dioxide, Final report of Joule 2, Project No. CT92-0031. British Geological Survey, Keyworth, Nottingham, UK, 355pp.
- Lindeberg E., Vuillaume J.-F. and Ghaderi A. (2009) Determination of the CO2 storage capacity of the Utsira formation. *Energy Procedia*, 1, 2777-2784.
- Pham, V.T.H., Riis, F., Gjeldvik, I.T., Halland, E.K., Tappel, I.M. and Aagaard, P. (2013). Assessment of CO2 injection into the south Utsira-Skade aquifer, the North Sea, Norway. *Energy*, 55, 529-540.
- Thibeau, S. and Mucha, V. (2011) Have We Overestimated Saline Aquifer CO₂ Storage Capacities? Oil & Gas Science and Technology Rev. IFP Energies nouvelles, 66, 81-92
- Thibeau, S., Seldon, L., Masserano, F., Canal Vila, J. and Ringrose, P. (2018). Revisiting the Utsira Saline Aquifer CO₂ Storage Resources using the SRMS Classification Framework. 14th Greenhouse Gas Control Technologies Conference Melbourne, 1, 21-26.

Email: christopher.lloyd-2@manchester.ac.uk

Video	