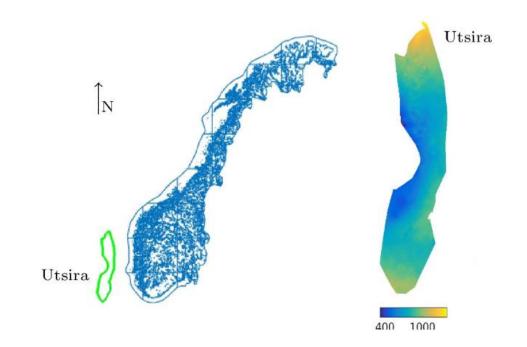

Application of Machine Learning to Assess the Value of Information in CO₂ Storage

Amine Tadjer, PhD student amine.tadjer@uis.no Department of Energy Resources

Supervisor: Reidar B. Bratvold, Professor Aojie Hong, Associate Professor

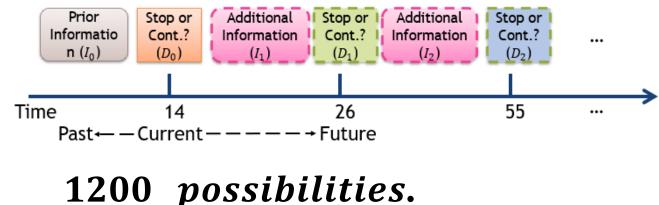
A good decision is an action we take that is logically consistent with the alternatives we perceive, the information we have, and the preferences we have.



Reservoir Model

- CO₂ Storage Atlas Norwegian Continental Shelf .
- Storage capacity estimated to be 16 Gt, with a prospectivity of 0.5-1.5 Gt.
- 40 years CO₂ injection period with injection rate ~10 Mt/ year.

Migration period : 3000 years.



Formation geomodels considered in this work : Utsira.

Problem settings

- 40 years injection time.
- Alternatives: continue or stop the injection at times t(i),
 i ∈ {14,26,32,40,50,55 }.
- Uncertainty/Scenario class: Permeability, porosity, temperature, pressure and Caprock elevations (100 geological realizations)
- Value derived from the decision situation: Net Present Value
- information data: AVO attributes (Gassmann's equation)

Net Present Value

NPV = *Revenu* - *Cost* - *Penality*

$$\begin{aligned} Revenu &= \$ \ 34/t \ CO_2 \ \times (M_{inj} - M_{leak}) \\ Cost &= \ \$31.5/t \ CO_2 \ \times M_{inj} \\ Penality &= \ \$1.2 \ /t \ CO_2 \ \times M_{leak} \end{aligned}$$

Approximate dynamic programming (ADP)

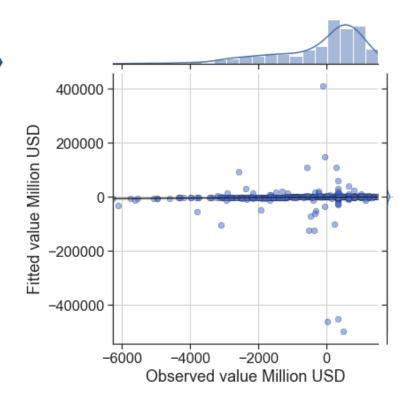
Monte Carlo simulation :

- 1. Many possible realizations of state variables (x^b) .
- 2. Forward modeling is undertaken to generate modeled AVO attributes (y^b) for each decision alternative a
- 3. For each decision alternative a, the NPV(x, a) is calculated.

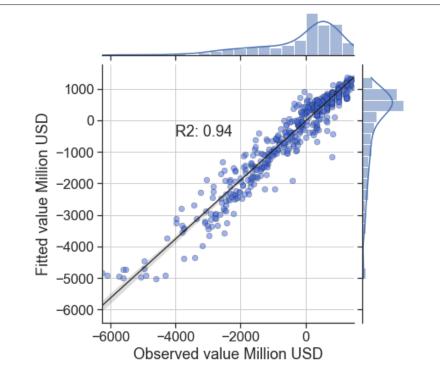
4

. The *EVWOI* is then
$$max_{a \in A} \left[\frac{1}{B} \sum_{b=1}^{B} NPV(x^{b}, a) \right]$$

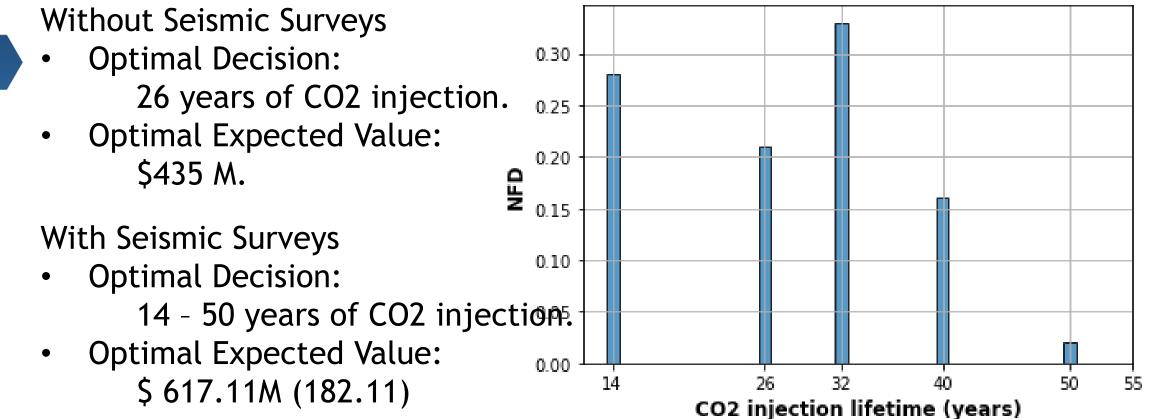
ADP Methodolgy


- 5. The **backward induction** is applied on the NPV to solve for the dynamic programming nature of the tree.
- 6. Starting recursively from the last decision tree node, we regress NPV at the next step vs AVO data, at the current step using a machine learning regression procedure to estimate the expected value of NPV.

7. The EVWI is then
$$\frac{1}{B}\sum_{b=1}^{B} max_{a \in A} E\left[NPV(x,a)/y^{b}\right]$$


Universitetet i Stavanger

8. Finally, the VOI is given by $max\{0, EVWI - EVWOI\}$.



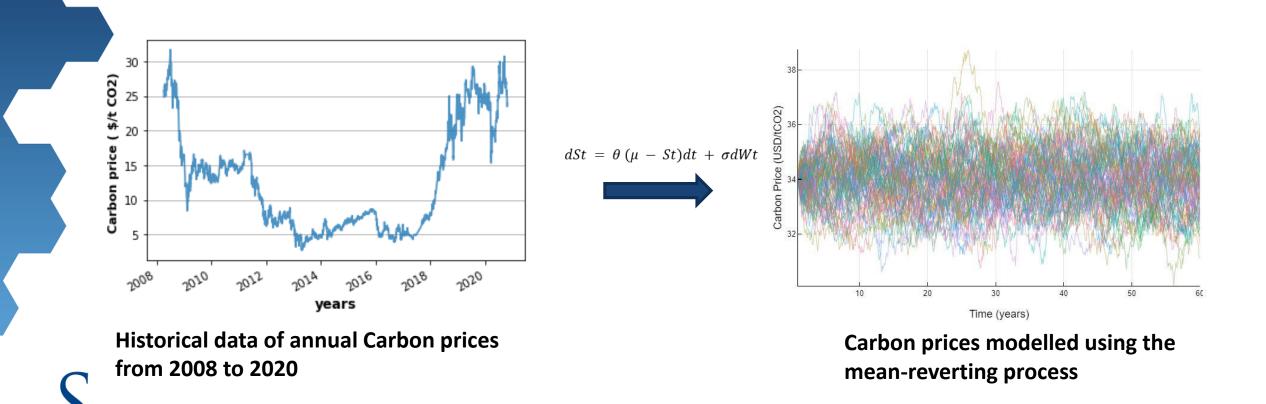
Automated Machine Learning (Auto ML) technique called the Tree-Based Pipeline Optimization Tool (TPOT).(Randal Olson and Jason H. Moore, 2016)

Sequential Decision Making for CO2 Storage

Sensitive analysis in AVO Attributes

The next step is to assume AVO attributes, R0 and G, to be noisy and normally distributed:

 $(R_0,G)^T \sim \mathcal{N}(m,T)$

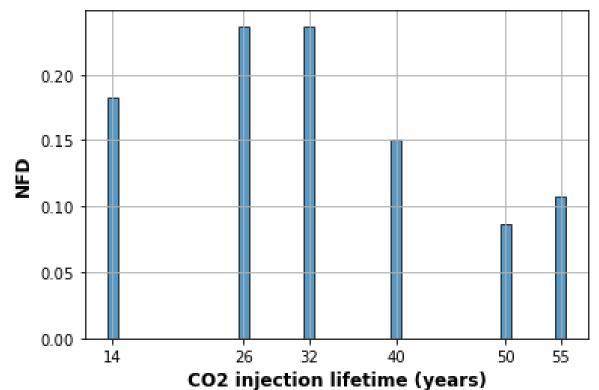

where the mean m is calculated using AVO equation. Following Eidsvik et al. (2015), the covariance matrix corresponding to the one set for the likelihood model for AVO data was set to the following:

$$T = c \begin{pmatrix} 0.06^2 & -0.7 \times 0.06 \times 0.17 \\ -0.7 \times 0.06 \times 0.17 & 0.17^2 \end{pmatrix}$$

Where c > 0.

Uncertainty in Carbon price

Universitetet i Stavanger


Decision created by dynamic model

Without Seismic Surveys

- Optimal Decision: 26 years of CO2 injection.
- Optimal Expected Value: \$432.5 M.

With Seismic Surveys and carbon price

- Optimal Decision:
 - 14 55 years of CO2 injection.
- Optimal Expected Value: \$823.11M

Discussions/perspectives

- The only way to create value is through good decision making.
- The accuracy of a seismic survey and carbon prices are likely to increase with time and the amount of CO_2 injected into the reservoir.
- More complex decision problem:
 - Increase/decrease injection rate
 - EOR using CO2 storage.
 - Study sensitivity to the decision framing parameters

Universitetet i Stavanger

Appendix

Net Present Value

Key facts/total costs of CCS:

- Carbon credits \$34 /t CO₂ → Carbon price in norway (2015)
- The cost of the CO₂ captured is in the range of \$11-32 /t CO₂ (Ortega et al., 2013) → \$25 /t CO₂ (Sintef, 2019).
- The total cost of construction, operation, and maintenance will be about \$3.5/t CO₂ (Bock et al., 2003).
- A cost estimate for storage in a saline formation USA is \$2.8/t CO₂ (IPCC, 2005).
- The cost of monitoring is in the order of \$0.2/t CO₂.
- \$ 1.2 /t CO₂ will be used as a penalty fine associated with the leakage.

