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Dear Editor and reviewers: 
 
We greatly appreciate the thorough and thoughtful comments provided on our 
submitted article. It has taken us a rather long time to complete the final revision. We 
made sure that each one of the reviewer comments has been addressed carefully and 
the paper is revised accordingly.  
 
As well, we have incorporated more images for better illustration of the concepts and 
added quite a few new references pertaining to the latest works on spectral geometry 
processing in the year 2008. 
 
Attached below are detailed responses to all the reviewer’s comments. The latter are 
shown in blue and our responses in red. 
 
Please let us know if you still have any questions or concerns about the manuscript. 
We will be happy to address them, now in a timely manner. 
 
Sincerely,  
 
The authors of paper 07C27. 
  



============ 
  Review #1 
============ 
 
Recommendation 
------------------------ 
  Accept 
 
Information for the Authors 
------------------------------------ 
Overall I find that this is a very nice survey, and a timely one, because there is no 
contemporary work that summarizes all the knowledge regarding spectral analysis of 
meshes and its applications in graphics. I have some minor comments regarding the 
manuscript and I hope the authors will consider addressing them, even though I 
recommended "accept" without revisions. Here are my suggestions in chronological 
order. 
 
It would be better to formulate the abstract and the intro in present tense (i.e. 
"theoretical background is provided" instead of "will be provided"). 
 
>> This is done. 
 
Sections 1 and 2 talk about the Laplacian without defining it. Surely, there are various 
definitions, as described later in the paper, but still it would be beneficial to give the 
reader some flavor or hint before plunging into the historical survey of section 2. 
Otherwise a novice reader will get lost quickly -- you talk so long about the spectrum of 
linear operators, but define one for the first time on page 7. Consider moving equation 
(1) and some of its related formalism to the beginning of the exposition. 
 
>> This is done. The definition of the graph Laplacian is inserted into the start of 
Section 2. Also, a general description of the Laplace operator is provided at the same 
time. In addition, we have inserted two new figures to provide clear illustration of the 
spectral approach and spectral embedding early in the paper. 
 
Section 2 is immediately followed by Section 4 (numbering needs correction). 
 
>> We are not sure about this comment since there is indeed a Section 3: Overview of 
the Spectral Approach. 
 
page 5, top: the text gives a (false) impression that any n x n matrix M has n real 
eigenvalues. Add that only certain types of matrices can be diagonalized, like the 
normal matrices over the field of complex numbers or symmetric matrices over the real 
numbers. 
 
>> We could not locate the specified text, but suspect that this might be referring to the 
second paragraph of Section 5. This issue is now rectified. 
  
page 8, very end: you say "The new operator does exhibit some nice properties. But a 
common drawback...". Please elaborate what "nice properties" mean in your context 
or remove this sentence (it's too vague). Same claim is repeated on page 9, top 



(regarding T'': When used in relevant applications, T'' exhibits nice properties" - what 
applications and what properties?) 
 
>> These issues are both addressed. 
 
Somewhere in Section 6.2 you should mention the recent works by Wardetzky et al, 
namely: 
"Discrete laplace operators: no free lunch". SGP 2007 
"Discrete Quadratic Curvature Energies", CAGD 24, 2007. 
These works have interesting and relevant discussion about the definition of the 
discrete Laplacian, the mass matrix and the related inner product on surfaces, 
symmetry, etc. 
 
>> We added the two references and commented on them in Section 6.2.4 and 
Section 6.5. 
 
Section 6.3.3: Q doesn't have a constant eigenvector because Q is constructed using 
the (correct) inner product on the discrete surface. This doesn't necessarily mean we 
can't use it for smoothing! Just that the flow needs to be constructed taking the right 
inner product into account. 
 
>> Q is related to the Tutte Laplacian T. The latter operator requires the degree 
weighted inner product to render it self-adjoint and its eigenvectors orthogonal, 
however, Q is already symmetric. The zero row sum property expresses the fact that 
the constant vectors should lie in the kernel of the operator. If this is not the case, no 
choice of inner product can remedy the situation. In terms of the inadequacy of Q for 
smoothing, we are quite specific about the smoothing operation --- it is the low-pass 
filtering approach as done in [Taubin 1995]. 
 
Page 11: when you talk about the cotangent Laplacian, mention that it approximates 
the mean curvature normal (Mark Meyer's thesis can be cited, for instance). 
 
>> We have elected to refrain from mentioning this interesting property of the 
Laplacian because it does not fit easily into the exposition and its relevance to spectral 
processing has not previously been expounded. 
 
Page 18-19, Section 9.3: It is interesting to note that when a partial eigenbasis is used 
for projecting the geometry, we loose rotation-invariance of the representation in some 
sense: it is not the same thing to first rotate the mesh (hence changing its global 
coordinates) and then projecting it on a subset of the eigenbasis, or vice versa (first 
project and then rotate). At least it seems to me that projection and rotation operators 
don't commute. 
 
>> The eigenprojection operation does commute with rotations; this can be seen as a 
consequence of the associativity of matrix multiplication. If P is the n x 3 matrix of 
vertex positions and R is a 3 x 3 rotation matrix, then P  = PRT is the rotated 
coordinates. Let E be the n x n matrix of orthogonal eigenvectors and let Ek be the n x  
k matrix consisting of the first k columns of E. Then the eigenprojection of the vertices 
P using the first k eigenvectors is given by the k x 3 matrix C = EkTP. The rotation of 



these projection coefficients yields the coefficients of the eigenprojection of the rotated 
geometry: 

 
C  = CRT = EkTPRT = EkTP . 

 
This observation has been inserted into Section 8.3. 
 
============ 
   Review #3 
============ 
 
Recommendation 
------------------------ 
   Accept 
 
Information for the Authors 
------------------------------------ 
 
Now that spectral mesh processing is doable (thanks to both hardware and software), 
this is the right time to publish this type of STAR. This is an important work, and a good 
reference (I especially like section 5, that gathers all useful theorems). Therefore, I 
recommend acceptance. 
 
However, I've got some regret: 
 
First, my philosophical two cents: 
The way things are presented in this paper is completely discrete. The continuous 
setting is evocated at several places, but the relations between continuous and 
discrete are not explicited. I think that the explanations derived by Ramsay Dyer et.al 
in their tech report [DZM07] could be integrated in-extenso (in a section that would be 
called "relations between the continuous and the discrete setting"). This is the first 
time I've seen that clearly explained, so since R. Dyer is a co-author of this paper, I'm 
surprised not to see it there! Since most of the geometry-processing community does 
not "think in the continuous setting", I could do without it, but from my point of view, this 
would add some value in this paper. 
 
>> The Laplacian operators are now treated in a separate section (Section 6) and the 
subsection on the geometric Laplacians (Section 6.5) has been rewritten to highlight 
the development of these operators via considerations of the properties of the 
differential operator, according to [DZM07]. 
 
Another place where I'd invoke the continuous setting is Section 4.1 when you say "it 
is commonly believed", I'd say that "it's true": If you compute "circular harmonics", i.e. 
the eigenfunctions of the second-order derivative, you exactly retrive the sines and 
cosines of the Fourier transform. Of course, this also works with a discretized circle, 
that has a circulant graph Laplacian, and that yields a  discrete Fourier transform (as in 
Taubin's argumentation), but for me this is a "particular case" of the more general 
continuous setting. This is more obvious in the case of the eigenfunctions of 
Laplace-Beltrami on the sphere, you exactly retrieve spherical harmonics. 
 



>> We acknowledge these facts pointed out by the reviewer and we added some of 
these to the paper. However, the original statement in the paper is meant to 
emphasize a resemblance between eigenanalysis with respect to the 
Laplace-Beltrami operator and classical Fourier analysis. There is only a resemblance 
as a key difference between the two situations exists; this is mentioned in the second 
paragraph of Section 4.1.  
 
Second, I think that more structure could be added in the exposition (again, I can do 
without it: since the goal of this paper is to be exhaustive, this may be anti-nomic with 
presenting a nice coherent structure). For instance, historically, these methods were 
developed in the machine-learning community. An alternative way of structuring all 
these approaches would be to start from the following reference (I think this would give 
some tracks for answering the open questions listed at the end of the paper): 
 
J. Ham, D. D. Lee, S. Mika, and B. Scholkopf, A kernel view of the dimensionality 
reduction of manifolds, technical report TR-110, Max Planck Institute for Biological 
Cybernectics (July 2003) 
 
This one unifies Isomap, Laplacian Eigenmaps and LLE, as a special case of kernel 
PCA and also: 
 
Y Bengio, P. Vincent, J.-F. Paiement, Spectral Clustering and Kernel PCA are 
Learning Eigenfunctions, 2003 
 
This one unifies Kernel PCA and Spectral clustering as a special case of learning 
eigenfunctions  (note the continuous setting) 
 
The taxonomy is then as follows: 
 
1. Learning Eigenfunctions 
   1.1 Kernel PCA 
      1.1.1 Isomap 
      1.1.2 Laplacian eigenmaps 
      1.1.3 LLE 
   1.2 Spectral clustering 
 
and I beleive that all the geometric methods can be attached to this hierarchy. 
 
The "Kernel Trick" (http://en.wikipedia.org/wiki/Kernel_trick) can be used to explain these 
methods (for instance in the section about Gram matrices, that come from there) 
 
The efficiency of these methods in the domain of geometry processing may be 
explained by: 
 
Geometric Methods for Feature Extraction and Dimensional Reduction: A Guided 
Tour, Christopher J.C. Burges, November 2004, Technical Report: MSR-TR-2004-55 
 
There were also recently several workshops on manifold learning and geometry: 
 
http://nips.cc/Conferences/2007/Program/event.php?ID=597 



http://people.cs.uchicago.edu/~niyogi/conference/speakers.html 
 
... and I suspect that Kohonen's SOM (Self Organizing Maps) are a special case of 
those (i.e., a specialized numerical procedure to compute the second and third 
eigenfunctions of some operator) 
 
(Keith Van Rijsbergen's "manifold" approach to Information Retrieval probably also 
belongs to that category of methods) 
 
There are also very interesting references in the "References" section of the following 
website: 
 
   http://www.math.yale.edu/~sl349/tutorials.html 
 
>> The reviewer has made some excellent points and we sincerely appreciate these 
well-thought comments. After considering these carefully, we decided not to introduce 
significant structural changes to the current paper, as the reviewer himself believes 
that these are not entirely necessary. However, we have added two paragraphs in 
Section 2.3 to allude to these relevant developments in the machine learning 
community and added the suggested references on kernel PCA, LLE, isomap, and 
Laplacian eigenmaps. As well, in quite a few other places in the paper, references to 
works from the machine learning communities are added to strength connections to 
this important relevant field.  
 
More specific remarks follow: 
 
Section 6.6.1: Gram matrices 
  I'd start by giving the general definition of a Gram matrix (i.e. matrix of the dot 
products of a familly of vectors), then particularize it to matrix learning. I'd mention the 
"Kernel trick" to justify the use of these matrices 
 
>> Done. This is now Section 7.2.1. 
 
Section 2, second paragraph: I'd add a reference to Belkin's paper about the 
convergence of graph Laplacians to their continuous counterparts. 
 
>> Thank you for pointing this out. However, the graph Laplacian defined in the current 
paper is quite specific; it is what is usually known as the Kirchhoff operator --- it is 
combinatorial. Belkin抯 result applies to a graph Laplacian that is constructed by 
applying a Gaussian to the pair-wise Euclidean distances between points in a cloud. 
This is an important result and we mention this in Section 7.2.3, when we discuss 
non-sparse Laplacians. 
 
Beginning of 2nd column: differential Laplacian coordinates: what is the link with 
spectral problems? 
 
>> We do not see a clear link. This sentence is meant to give a historical account of 
the use of mesh Laplacians; works on differential coordinates are quite prominent in 
the geometry processing literature. 
 



Section 3: overview of the spectral approach: M may be also obtained by discretizing a 
continuous operator.  
 
>> Added in Section 3. 
 
"Lagrangian of a graph" -> this one is intriguing (I do not know about that), could you 
elaborate on that? 
 
>> This is defined in the paper now. See Section 3 after the bullet 揃ased on the 
operator used . 
 
4.1: "Harmonic" behavior of Laplacian eigenvectors: 
 - please define "harmonic" (i.e. minimizer of Dirichlet energy) 
 - this can be simply explained by the min-max principle (theorem 5.2 
  or its continuous version) 
 
>> Done. 
   
4.3: "appropriately designed linear operator" with a specific application in mind, how 
would you "design" the operator? 
  
>> Changed to 揷hosen . 
 
Section 5: this is very nice to have all these theorems in the same place. 
  Giving also a geometric intuition of what's going on could make this section even 
stronger. 
 
>> Agreed. 
   
End of Section 6.3.1: using 1/2 (T + T^t) as suggested by Levy is not very good. Vallet 
and Levy's tech report (07) gives a better solution. 
 
>> We have now mentioned here that the use of a metric is a prefered way to treat T 
as a self adjoint operator. We also mention the work of Vallet and Levy in this context.  
 
End of Section 6.3.2: Vallet and Levy's published a version of their tech report 
(Eurographics 08) with this point of view that may be interesting for the authors (that 
may also replace the citation at the send of 6.4) 
 
>> We have develped a brief discussion of the DEC in Section 6.5.1 where we 
reference this derivation of the Laplacian presented in [Vallet and Levy 2008]. All 
refereneces to this work  now refer to the Eurographics publication rather than the 
technical report.  
 
Section 6.5: it could be interesting to explain what the continuous Schroedinger 
operator is (together with its original physical meaning) 
 
>> Done. Now in Section 7.1. 
 
6.7.1: non-sparse Laplacians: Belkin's discrete Laplacian is also non-sparse and could 



be discussed there. 
 
>> Precisely. This is done now, Section 7.2.3. 
 
============ 
    Review #4 
============ 
 
Recommendation 
------------------------ 
  Accept after minor revision 
 
Information for the Authors 
------------------------------------ 
 
The paper sums up nicely the latest advances in spectral mesh processing. 
 
I had a few comments which might be helpful to the authors: 
 
- A few more images of relevant applications could be useful: a graph showing the fast 
decay of spectral coefficients from [KG00], the image from [Rus07] showing the 
clustering of shapes with different deformations, segmentation images from [KLT05], 
the nodal sets and contours of eigenfunctions from [L06], etc. 
 
>> Although we tend to agree, the applications listed in the survey are too many to 
choose from. Each will benefit from having an illustrative image, but we certainly 
cannot do that. After much debate, we have decided to be consistent and not show 
any image for the purpose of displaying results from these applications. We wish for 
the survey to serve as a single, comprehensive collection of pointers and a point of 
departure for readers to explore the relevant literature. 
 
Having said that, we in fact have added new images to illustrate the main concepts 
underlying the spectral approach, e.g., an overview of the spectral approaching, 
construction of spectral embeddings, eigenvector plots, nodal line plots, etc. 
 
- In the context of shape matching, the fact that there exist non-similar shapes which 
are isospectral, should be mentioned. 
 
>> We added a reference to isospectral graphs and gave a citation, in Section 10.1. 
 
- In section 6, it should be noted that the geometric Laplacian can be also be derived 
as the ratio of the dual edge length to the primal edge length, with different Laplacians 
emerging from different definitions of duality. This is derived and explained in [Gli05]. 
 
>> We have mentioned Glickenstein's work and duality structures in Section 6.5.1 We 
did not detail the derivation of the cotan operator from this perspective, but instead 
pointed to the exposition in [VL08,DHLM05] and ]WBH*07].  
 
- In section 6, the "No Free Lunch" theorem for Laplacians should be mentioned. 
[WMK*07]. 



 
>> This reference is added and commented in Section 6.2.4. 
 
- The MDS section is a bit out of place in the operators section. 
 
>> It is now in a subsection with a new title --- Section 7.2.3. 
 
- The generalized eigenvalues problem could also be mentioned. 
 
>> A new subsection has been added. -- Section 9.1 
 
- In section 6, it should be mentioned that the combinatorial Laplacians are sensitive to 
the mesh triangulation. 
 
>> A reference to the Connectivity Shapes paper has been added to emphasize that 
geometric properties captured by combinatorial Laplacians are lucky accidents. -- 
second paragraph introducing Section 6.   
 
- It was nice, if Table 1 stated which operator and eigenstructure each paper used. 
 
>> Perhaps. Though subsequent coverage in the section made these clear. 
 
There are some theoretical questions which are not addressed by the authors, but I 
think are of interest: 
 
- The mesh Laplacian can also be defined for meshes with boundaries. Does spectral 
analysis work as well in that case? 
 
>> Generally yes. In this survey, we do not specifically address issues which might 
arise due to the existence of boundaries. Most techniques surveyed will work for both 
closed and open meshes, as long as they are 2-manifolds embedded in 3D. We have 
made clear of this at the start of Section 3.  
 
- Is spectral analysis sensitive to small topologic changes - for example will two 
meshes with different genus but which are almost identical otherwise (for example, 
like the Homer mesh from [Rus07]) have similar eigenvectors and eigenfunctions? 
 
>> For operators based on pairwise geodesic distances, the eigenstructures are not 
expected to remain stable even after small topological changes. However, for mesh 
Laplacians, the answer to this question is not entirely clear. We list this as a problem 
for future work. 
 
References that should be added: 
[WMK*07] Max Wardetzky, Saurabh Mathur, Felix K鋖berer, Eitan 
Grinspun.:Discrete Laplace operators: No free lunch. Symposium on Geometry 
Processing, 2007, pp. 33-37. 
[Gli05] GLICKENSTEIN D.: Geometric triangulations and discrete Laplacians on manifolds. 
http://arxiv.org/math.MG/0508188. (2005). 
 
>> These references have been added and discussed in the paper --  Sections 6.2.4 and 6.5.1 


